翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

scoring algorithm : ウィキペディア英語版
scoring algorithm

Scoring algorithm, also known as Fisher's scoring,〔(A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects )〕 is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher.
==Sketch of Derivation==
Let Y_1,\ldots,Y_n be random variables, independent and identically distributed with twice differentiable p.d.f. f(y; \theta), and we wish to calculate the maximum likelihood estimator (M.L.E.) \theta^
* of \theta. First, suppose we have a starting point for our algorithm \theta_0, and consider a Taylor expansion of the score function, V(\theta), about \theta_0:
: V(\theta) \approx V(\theta_0) - \mathcal(\theta_0)(\theta - \theta_0), \,
where
: \mathcal(\theta_0) = - \sum_^n \left. \nabla \nabla^ \right|_ \log f(Y_i ; \theta)
is the observed information matrix at \theta_0. Now, setting \theta = \theta^
*, using that V(\theta^
*) = 0 and rearranging gives us:
: \theta^
* \approx \theta_ + \mathcal^(\theta_)V(\theta_). \,
We therefore use the algorithm
: \theta_ = \theta_ + \mathcal^(\theta_)V(\theta_), \,
and under certain regularity conditions, it can be shown that \theta_m \rightarrow \theta^
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「scoring algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.